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SUMMARY

Recently, a new hybrid scheme is introduced for the solution of the Boussinesq equations. In this study, the
hybrid scheme is used to solve another form of the Boussinesq equations. The hybrid solution is composed
of finite-volume and finite difference method. The finite-volume method is applied to conservative part
of the governing equations, whereas the higher order Boussinesq terms are discretized using the finite-
difference scheme. Fourth-order accuracy is provided in both time and space. The solution is then applied
to several test cases, which are taken from the previous studies. The results of this study are compared with
experimental and theoretical results as well as those of the previous ones. The comparisons indicate that
the Boussinesq equations solved here and in the previous study produce quite similar results. Copyright
q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Starting from Boussinesq [1], many attempts are made to provide a good description of wave
propagation from deep to shallow water. The equations describing this phenomenon are named
after Boussinesq [1] and called Boussinesq equations. To extent the range of applicability of the
original equations, which are developed for a horizontal bottom, Peregrine [2] re-derives a system of
Boussinesq equations for varying water depth. Further improvements are made in order to provide
a set of equations for deeper water. Madsen et al. [3] introduce a new form of equations with
improved linear shoaling and dispersive characteristics. Later, Madsen and Sørensen [4] derive a
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new set of equations for slowly varying bathymetry. Beji and Nadaoka [5] also introduce a similar
set of equations but their equations differ from Madsen and Sørensen in terms of the way of
the derivation of the governing equations. As a result, their momentum equations are different.
Nwogu [6] derive another commonly used set of equations in terms of the velocity at arbitrary
level. The equations given in References [4–6] describe weak non-linear and weak dispersive water
waves in variable water depths and are proved to provide a reasonably good description of wave
propagation in coastal regions [7]. In the literature, there are other Boussinesq-type equations such
as those given in References [8, 9].

Although there are many forms of the Boussinesq equations, the Boussinesq equations derived
by Madsen and Sørensen [4], Beji and Nadaoka [5] and Nwogu [6] are commonly preferred for
modelling wave propagation from deep to shallow water [10–13].

As well as the significant developments in the extension of the range of applicability of the
Boussinesq-type equations, a considerable amount of studies has been completed in the direction
of the solution of these equations. The Boussinesq-type equations are mostly solved by the finite
difference method [3–5, 13–15]. The use of finite element method comes next [9–11, 16, 17].
Although the finite-volume method with a shock capturing scheme is widely preferred for the
simulation of shallow water [18–21], its application for the Boussinesq-type equations is limited
[12, 22]. The solutions given in these two references are also not fully based on the finite-volume
method. They are mixture of the finite-volume and the finite-difference methods, so they are called
hybrid solutions. The main possible reason for the restriction of the use of the method could be
the problem of obtaining characteristics of the equations, which are needed for the estimation
of the numerical fluxes through the cell interfaces. Hence, part of the equations is recast in the
form that the finite-volume method is applicable and the remaining terms are discretized using the
finite-difference method [12].

It has been shown that the applications of all the methods mentioned produce quite accurate
results and each of them can be used for the solution of the Boussinesq equations [3–5, 10, 11].
However, it may be stated that the finite-difference method is easiest to use and the finite-element
method is more easily applied to irregular domain. The advantages of the finite-volume method
over the others are proved for the solution of the shallow water equations [21, 23] but not for
the solution of the Boussinesq equations as yet not a solution existed based on entirely-finite
volume method. These advantages given in References [21, 23] are briefly as follows: the finite-
volume method can be easily applied to structured or unstructured grids and it requires significantly
less computational effort than the finite element method. The application of the hybrid solution
shows that it gives more accurate results than the finite-difference solution for initially steep
wave propagation [22]. Moreover, it has an advantage over the finite-difference method that
non-linear convective momentum term is easily treated. The solution is particularly useful for
the short and long wave interactions as the solution can be easily turned into entirely finite-
volume solution of the shallow water equations by removing so called higher order Boussinesq
terms [12].

In this study, previously introduced hybrid solution by Erduran et al. [12] for the Boussinesq
equations given by Madsen and Sørensen [4] is applied to another form of Boussinesq equations
derived by Beji and Nadaoka [5]. Here after, the Boussinesq equations introduced by Madsen and
Sørensen [4] are called ‘MS’ and the Boussinesq equations derived by Beji and Nadaoka [5] are
named as ‘BN’.

Erduran et al. [12] show that the first step in the construction of the hybrid scheme is to recast
the governing equations to obtain a conservative part that suits the finite-volume discretization.
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The conservative part has the continuity equation and part of the momentum equations (acceleration
term and convective momentum terms). The remaining terms in the momentum equations, namely
the higher order dispersive non-linear Boussinesq terms, the friction and the bottom slope terms,
are considered as the source and the sink terms. The conservative part is discretized using the
finite-volume method with the Roe scheme [24] whereas the source and sink terms are discretized
using the finite-difference method.

In order to avoid the numerical diffusion (occurring when the truncation errors are of the same
order as the dispersive terms), one way is to provide higher order accuracy [25]. The hybrid
method provides fourth-order accuracy in both space and time discretization [12]. The spatial
derivative terms in the conservative part are discretized by so-called fourth-order accurate compact
monotone upstream-centred schemes for conservation laws (MUSCL)-total variation diminishing
(TVD) scheme [26]. The remaining spatial derivative terms are discretized by the ordinary finite-
difference approach. The bottom slope term is treated using the surface gradient method, introduced
by Zhou et al. [20]. A fourth-order accurate solution in time is also provided by using the third-
order predictor scheme of Adams–Basforth first and later the fourth-order corrector scheme of
Adams–Moulton [25]. In this hybrid solution, the continuity equation is solved explicitly, whereas
the momentum equation is solved implicitly, using a double-sweep algorithm [27].

This study has twofold; an application of hybrid scheme to the BN type Boussinesq equations,
and a comparison of the results obtained from the solution of the BN and the MS. The present
results are also compared with the available experimental and theoretical results.

It is hoped that the comparison would be useful to determine the differences of these equations
as both sets of equations (BN and MS) are solved by using the hybrid scheme. The differences
(if any) tried to highlight here are only corresponding to practical numerical applications and do
not include the derivations of these equations and so forth. In the literature, there are a number of
discussions corresponding to the instinctive differences between the MS and the BN. When Beji
and Nadaoka [5] first introduce their set of Boussinesq equations, they state that their derivation
satisfies the energy conservation but the MS does not. They remark that the differences between the
MS and the BN come from the fact that the former uses the depth-integrated velocity whereas the
latter uses the mean velocity in their derivations. This leads to different momentum equations with
respect to the depth-gradient terms. Later, Schäffer and Madsen [28] claim that the formalism of
the BN and the MS are equivalent and the difference is in the implicit choice of bottom slope terms.
They state that the shoaling for the MS equations is acceptable up to kh = 3 while that of the BN
is limited up to kh = 1.7. Hence, they remark that the conservation of energy is an important issue
but if there is no side effect that limits the application range of the equations. They also conclude
that a set of equations with no exact energy conservation does not mean that it is a disadvantage but
with a slight variation in the energy conservation one can obtain a better shoaling characteristic.
In the further discussion by Beji and Nadaoka [29], it is stressed that the formalism of the BN and
the MS is not identical but there is a slight but an obvious difference between them. They claim
that one can obtain different forms of the equations if the MS’s approach is followed, however,
their procedure results in a single possible form. Another point emphasized is that the Boussinesq
equations derived based on the mean velocity result in the continuity equation that is exact to all
order of dispersion parameters whereas those constructed based on the surface velocity produce
the momentum equations, which are exact to all order of dispersion parameters. Therefore, the
former generates the truncation errors in the momentum equations while the latter in the continuity
equation [29]. However, they claim that it is the reason why the Boussinesq equations formulated
in terms of the mean or surface velocity are more accurate than the others, which are said to have
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the truncation errors in both in the continuity and the momentum equations. Later, Schäffer and
Madsen [30] emphasize that one cannot reach a conclusion that the Boussinesq equations with
either the continuity or the momentum equations exact in a linear sense are more accurate without
considering overall accuracy of the combination of these two equations. Regarding to the energy
conservation, Schäffer and Madsen [30] also disagree with Beji and Nadaoka [29]. They have
highlighted two points; one can conclude that all the formulations conserve the energy within the
accuracy that these equations are valid. Secondly, they state that there is no correlation between
the energy conservation flux and either the continuity or momentum equations that are exact in a
linear sense. During these discussions, Nwogu’s equations [6] are also evaluated in terms of the
energy conservation. Previously, Nwogu’s equations [6] are believed to be in a group of Boussinesq
equations that conserve the energy exactly [5], later all contributors to these discussions agree that
Nwogu’s equations [6] do not also preserve the energy exactly.

Although we have provided brief introductory information on the discussions of the BN and the
MS in terms of their instinctive properties, the aim of this study is not to go into this discussion
but to introduce the hybrid solution to the BN and to compare the BN and the MS in terms of
their practical applications.

In the following section, the BN equations are solved by using the hybrid solution and later in
Section 3, the solution is applied to several test cases that are taken from the previous studies. The
comparisons are also given in this section. The applicability as well as the observed differences
between the BN and the MS are discussed in Section 4. The conclusions are drawn and given in
Section 5.

2. METHODOLOGY

In this section, we will first give brief introductory information on the MS. Erduran et al. [12]
rewrite the MS equations in the following form:
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where � is surface elevation measured from the still water depth (d), P (P = hu) is the volume
flux, u is the depth-averaged velocity in the x direction, h is the water depth, �x is the bottom
shear stress in the x direction and B is a coefficient, set equal to 1

15 .
They also show that these equations can be written in compact-conservative form as

�q
�t

+ �f(q)

�x
= b(q) (4)

where q= (h, hu)T is the so-called conservative physical vector; f(q)= (hu, hu2 + 1
2gh

2)T is the
flux vector. The vector b(q) = (0, gh(Sox − S fx ) − �x )

T is used to denote the source/sink terms,
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where Sox = gh(�z/�x) is the bottom slope and S fx is the friction term that can be given by
Manning’s Formula as

S fx = n2u2

h4/3
(5)

Now, we try to write the BN equations in a similar compact-conservative form using the same
steps that are taken by Erduran et al. [12]. The conservative form is necessary for the finite-volume
application.

The original BN equations with the bottom shear stress in one-space dimension can be given as
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where � is a coefficient and taken to be 1
5 [5].

Following by Erduran et al. [12] to obtain conservative forms of Equations (6) and (7), the
following steps should be taken. First, it is assumed that the bottom elevation (topography) is not
changing with time or that changes are small in comparison with surface elevation changes, hence:
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Second, the derivative of the still water depth, d , with respect to x represents the bottom variation
in the x direction. Therefore, it can be rewritten as

gh
�d
�x

= −gh
�z
�x

(11)

where z is the bottom elevation measured from the datum. The left-hand side of Equation (11) is
known as the bottom slope term.

By introducing Equations (9)–(11) into Equations (6) and (7) and using the following relation
[7]:

u(x, t) = P(x, t)

d(x) + �(x, t)
(12)
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the new conservative form of the BN equations reads:
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where Q = P/d .
It can be seen that the difference between the MS and BN is in their momentum equations.
The compact conservative form of the BN reads:

�q
�t

+ �f(q)

�x
=b(q) (16)

where q= (h, hu)T is the so-called conservative physical vector; f(q)= (hu, hu2 + 1
2gh

2)T is the
flux vector. The vector b(q) = (0, gh(Sox − S fx ) − �x )

T is used to denote the source/sink terms,
where Sox = gh(�z/�x) is the bottom slope and S fx is the friction term that can be given by
Manning’s Formula as

S fx = n2u2

h4/3
(17)

Note that the bottom shear stress term is replaced with the friction term.

2.1. Solution

The solution algorithm is chosen exactly as given by Erduran et al. [12] in order to provide much
better comparisons between the MS and the BN. Therefore, the solution is briefly introduced and
the readers refer to Reference [12] for more detailed information.

Equations (13) and (14) are written in the following forms [12, 25]:
ht = E (18)
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where
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and the subscript t denotes time derivative while subscript x denotes space derivative.
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The hybrid scheme is constructed by application of the finite-volume method to the homogeneous
part of Equations (16) and the remaining terms are discretized by the finite-difference method.
Hence, the overall discretized equations in space read:

E =− 1

A

m∑
w=1

T−1(�w)fw1 (q̃w)Lw (20)

F = − 1

A

m∑
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6�x3
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12�x3
(−di+2 + 8di+1 − 8di−1 + di−2)[�i+1 − 2�i + �i−1] (21)

where A is the area of the cell, m is the number of sides of the cell, w is an index that represents
the side, T(�w) is the transformation matrix which can be obtained by rotating the co-ordinate
axes, T−1(�w) is the inverse transformation matrix, Lw is the length of the wth cell side, �w is
the angle between the outward normal vector n and the x axis, q̃w is the transformed conservative
physical (variable) vector obtained by multiplying q by the transformation matrix and fw1 (q̃w) refers
to a numerical mass flux, related to the first component, h, fw2 (q̃w) corresponds to the numerical
momentum flux [18] and zi+1/2 and zi−1/2 are the bed elevations at cell interfaces; i + 1

2 and
i − 1

2 , respectively [20].
The key element in the finite-volume method is the estimation of the numerical fluxes through

the cell interfaces. Again, in order to provide exactly the same solution for the BN, the numerical
fluxes are also evaluated using the Roe scheme [24], which is used in the previous study [12] even
though the other well-known schemes such as HLL, HLLC and Osher could be applied.

As stated in the introduction section, it is necessary to provide the higher order accuracy to
avoid the unwanted numerical diffusion. Thus, the fourth-order compact MUSCL-TVD scheme
[26] is used to construct the cell interface values prior to computation of numerical fluxes. The
treatment of the bottom slope is achieved by the surface gradient method [20]. As a result, the
following equations are obtained for the cell interface values:

HL
i+1/2 = Hi + [�(r1)�

∗Hi−1/2 + �(1/r1)2�
∗Hi+1/2]/6 (22)

HR
i+1/2 = Hi+1 − [�(r2)2�

∗Hi+1/2 + �(1/r2)�
∗Hi+3/2]/6 (23)

where HL
i+1/2 is the surface level at the left-hand side of the interface i + 1

2 and HR
i+1/2 is the

surface level at the right-hand side of the interface i + 1
2 .

The inside of the cell under consideration always corresponds to the left-hand side of the
interface, and the neighbouring cell to the right-hand side.

The values of �∗H are calculated in the following way:

�∗Hi+1/2 =�Hi+1/2 − �3Hi+1/2/6, �Hi+1/2 = Hi+1 − Hi

�3Hi+1/2 =�Hi+3/2 − 2�Hi+1/2 + �Hi−1/2
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�Hi−1/2 =m(�Hi−1/2, �Hi+1/2, �Hi+3/2)

�Hi+1/2 =m(�Hi+1/2, �Hi+3/2, �Hi−1/2)

�Hi+3/2 =m(�Hi+3/2, �Hi−1/2, �Hi+1/2)

m denotes the Minmod limiter and is given as

m( j, k, l) = (S)max[0,min(| j |, b2(S)k, b2(S)l)]
where S = sign( j) and b2 = 2.

The function �(r1) for the use of van Leer limiter is defined as

�(r1) = r1 + |r1|
1 + r1

and similarly for r2, where

r1 = �∗Hi+1/2

�∗Hi−1/2
, r2 = �∗Hi+3/2

�∗Hi+1/2

The construction of cell interface values for h is obtained by

hLi+1/2 = HL
i+1/2 − zi+1/2 and hRi+1/2 = HR

i+1/2 − zi+1/2 (24)

where zi = (zi+1/2 + zi−1/2)/2 and H = h + z.
The higher order accuracy is also necessary for the time integration and that is provided

by using the third-order Adams–Basforth algorithm in the predictor stage and the fourth-order
Adams–Moulton algorithm in the corrector stage, resulting in a fourth-order accurate solution in
time [12, 25]. The time integration of the BN reads:

(1) Predictor stage (Adams–Basforth method)

hn+1 = hn + �t

12
[23En − 16En−1 + 5En−2] (25)

Un+1 =Un + �t

12
[23Fn − 16Fn−1 + 5Fn−2] (26)

(2) Corrector stage (Adams–Moulton method)
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24
[9Fn+1 + 19Fn − 5Fn−1 + Fn−2] (28)

Un and Un+1 are given in Equations (29) and (30), respectively.
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where K1= (1+�) ((dni )3/3�x2) and K2= (1+�)[(dni )2/24�x2](−dni+2+8dni+1−8dni−1+
dni−2).

As can be seen, the continuity equation requires an explicit solution, which is obtained from
Equations (25) and (27), respectively. However, the momentum equation requires an implicit
solution. Hence, Equations (26) and (28) are rearranged and given in Equations (31) and (32).
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i−1 + B1Pn+1
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Both in the predictor and the corrector stages, a system of simultaneous linear equations given in
Equations (31) and (32) needs to be solved for every grid point. The solution is achieved by using
so called ‘Double-Sweep algorithm’ [26]. However, the corrector stage requires repetition, which
ends when the error between two successive results given in Equation (33) is less than 0.001 [25].

� f =
∑

i | f n+1
i − f (n+1)∗

i |∑
i | f n+1

i | (33)

where f represents any of the variables (h and P) and ∗ denotes the previous iteration.

3. TESTS AND RESULTS

One of the objectives of this study is to compare the results obtained from the BN and the MS.
That’s why, the same algorithms introduced by Erduran et al. [12] for the solution of the MS is
selected. For the same purpose, the hybrid solution of the BN is verified by applying the solution
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Figure 1. Free surface profiles obtained from MS and BN—sinusoidal wave
propagation in deep water (d/L0 = 0.43).

to the tests that used in Reference [12]. These tests are sinusoidal wave propagation in deep waters,
bichromatic wave propagation in deep water, sinusoidal wave from deep to shallow water (linear
shoaling) and sinusoidal wave propagation over a bar.

3.1. Test A: sinusoidal wave propagation in deep waters

This test is originally given by Madsen et al. [3]. In this test, a sinusoidal wave propagates in a
channel with a horizontal bottom. The sinusoidal wave amplitude and period are 2.5 s and 0.1 m,
respectively, resulting in d/L0 = 0.43 where L0 is the wave length in deep water. The channel has
the still water depth of 4.2m and it is 120m long. In the application of the numerical model, at the
seaward boundary, a sinusoidal wave is generated and at the shoreward boundary a sponge layer
[25, 31] is introduced to absorb the incoming wave. The simulation is completed with a time step
of 0.02 s and a spatial grid size of 0.1875 m, resulting in 650 cells being used. The free surface
profiles with respect to the still water depth obtained from the present model and the MS given
by Erduran et al. [12] are shown in Figure 1. This test is repeated in deeper still water depths of
4.5 and 5 m in order to see whether or not the results are influenced with an increase in d/L0.
Figures 2 and 3show the free surface profiles for the still water depths of 4.5 and 5m, respectively.
In Figures 1–3 the continuous line represents the differences in the surface elevation values obtained
from the MS and the BN for each grid points. As can be seen from Figures 1–3, the differences
for all cases are so small that it is difficult to see them. The computed maximum differences above
and below the still water depth for these three cases are given in Table I. The computed and the
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Figure 2. Free surface profiles obtained from MS and BN—sinusoidal wave
propagation in deeper water (d/L0 = 0.46).
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Figure 3. Free surface profiles obtained from MS and BN—sinusoidal wave
propagation in deeper water (d/L0 = 0.51).

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:827–849
DOI: 10.1002/fld



838 K. S. ERDURAN

Table I. The maximum differences in the surface elevation values obtained from MS and BN
for sinusoidal wave propagation in deep water.

The maximum difference above The maximum difference below
d/L0 the still water depth (m) the still water depth (m)

0.43 6.2 × 10−5 −3.6 × 10−5

0.46 4.2 × 10−5 −5.8 × 10−5

0.51 4.8 × 10−5 −5.6 × 10−5

Table II. Computed and theoretical wavelengths and resulting celerity errors for sinusoidal
wave propagation in deep water.

Computed Theoretical Difference in computed
wavelength wavelength and theoretical Celerity errors

d/L0 (m) (m) wavelength (m) (%)

0.43 9.97 9.97 9.68 0.29
0.46 10.12 10.12 9.70 0.42
0.51 10.22 10.22 9.73 0.49

theoretical wavelengths obtained from linear wave theory given in Equation (34) are shown in
Table II. The differences in wavelengths and the resulting celerity errors are calculated and also
given in Table II. As the computed wavelengths obtained from the MS and BN are almost identical,
only a single set of computed wavelengths is given in Table II

L =
(
gT 2

2�

)
tanh

(
2�d

L

)
(34)

3.2. Test B: bichromatic wave propagation in deep water

This test is also first introduced by Madsen et al. [3]. The same channel, still water depth, time step
and the grid size given in the previous test are used. In this test, a wave composed of two sinusoidal
waves; one with a period of 2.5 s (d/L0 = 0.43) and another with a period of 3 s (d/L0 = 0.3) are
generated at the seaward boundary and the sponge layer is introduced at the shoreward boundary.
The amplitude of both waves is 0.05 m. The result at 12 m away from the seaward boundary over
90s is illustrated in Figure 4. It is again observed that the differences in the surface elevation values
obtained from the MS and the BN are unnoticeable with naked eyes. The maximum differences
above and below the still water depths are 0.001 and −0.001 m, respectively. The ratio of the
maximum differences to the waves heights (0.1 m) are ±1%. It is noted that the results presented
here agree with those given by Madsen et al. [3].

3.3. Test C: sinusoidal wave from deep to shallow water (linear shoaling)

This test is originally used by Madsen and Sørensen [4] and it is conducted in a channel with
700 m long. The bottom of the channel is flat for the first 10 m from the seaward boundary and
from 10 to 650 m it has a slope of 1/50 and between 650 and 700 m it is flat again. The constant
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Figure 4. Free surface profiles obtained from MS and BN–bichromatic wave propagation in deep water.

still water depth of 13 m from the seaward boundary to 10 m down is applied whereas the still
water depth between 650 and 700 m is 0.2 m. A sinusoidal wave with a period of 4 s is produced
at the seaward boundary and again the sponge layer is introduced at the shoreward boundary. The
time step and the grid size are chosen exactly the same as taken by Erduran et al. [12]. They are
0.01 s and 0.2 m, respectively.

Madsen and Sørensen [4] complete this linear shoaling test by modifying their original momen-
tum equation and they use the following momentum equation instead:

�P
�t

+ gd
��

�x
+ �x = 0 (35)

As stated by Erduran et al. [12], this form of the momentum equation is not suited for the finite-
volume application as the slopes of the characteristics cannot be extracted. Therefore, the following
momentum equation as introduced by Erduran et al. [12] is solved here:

�P
�t

+ gh
��

�x
+ �x = 0 (36)

Equations (35) and (36) are not the same but it seems that the closest form of Equation (35), which
is suited for the finite-volume application, is Equation (36). The problem with hybrid scheme
application to Equation (35) is given in more detail in Reference [12].

Figure 5 demonstrates the free surface profiles obtained from the MS and the BN for comparison.
As it is difficult to observe the differences between the free surface profiles obtained from the MS
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Figure 5. Free surface profiles obtained from MS and BN and maximum elevation envelope calculated
by linear theory—sinusoidal wave propagation from deep water to shallow water.
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Figure 6. Free surface profiles between 125 and 150m, obtained from MS and BN and maximum elevation
envelope calculated by linear theory—sinusoidal wave propagation from deep water to shallow water.
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Figure 7. Free surface profiles between 500 and 550m, obtained from MS and BN and maximum elevation
envelope calculated by linear theory—sinusoidal wave propagation from deep water to shallow water.
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Figure 8. Free surface profiles between 550 and 600m, obtained from MS and BN and maximum elevation
envelope calculated by linear theory—sinusoidal wave propagation from deep water to shallow water.
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Figure 9. Free surface profiles between 600 and 650m, obtained from MS and BN and maximum elevation
envelope calculated by linear theory—sinusoidal wave propagation from deep water to shallow water.

and the BN due to the presentation of large amount of data, Figures 6–9 showing the same profiles
in a smaller interval are provided. In Figures 5–9, the maximum elevation envelope calculated by
linear theory is also demonstrated for comparisons of the results. Starting from the beginning, it
is observed that both the results of the BN and the MS show small discrepancies comparing to
the maximum elevation envelope. Generally speaking, the free surface profile of the BN is above
the maximum elevation envelope whereas that of the MS is below. It is also realized that the
differences in the surface elevations values obtained from both the BN and the MS with respect
to that of the linear theory generally increase towards the shoreward boundary. In order to provide
a much better comparison, the peak surface elevation values above the still water depths at wave
crests along the channel obtained from the solutions of the BN, MS and the linear theory as well as
the differences are given in Table III. Furthermore, the errors in the peak surface elevation values
of the BN and the MS are also computed with respect to the linear theory. They are given in
Table IV.

It is seen that the MS results are generally closer to the results of the linear theory even though
the BN produce better results at some points, see Table IV. This statement is also confirmed by
the calculated total absolute differences, computed using the peak values at the wave crests; the
total absolute difference between the results of the MS and the linear theory is 0.0617 m and the
total absolute difference between the results of the BN and the linear theory is 0.0774m. The MS
produces the maximum error of 7.3% whereas the BN gives 8.1%. The computed averaged errors
for the MS and the BN are 3.8 and 5.1%, respectively.
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Table III. Linear shoaling test results: the peak surface elevation values above the still water depths
at wave crests along the channel obtained from the solutions of BN, MS and Linear theory and the

calculated differences.

Linear MS BN Difference (m) Difference (m)
Distance (m) theory solution solution MS BN

23.5 0.0496 0.0487 0.0488 0.0009 0.0008
49.7 0.0495 0.0485 0.0491 0.0009 0.0004
75.7 0.0494 0.0483 0.0493 0.0010 0.0001

101.3 0.0492 0.0482 0.0496 0.0010 −0.0004
126.9 0.0491 0.0482 0.0500 0.0009 −0.0009
152.3 0.0489 0.0480 0.0502 0.0009 −0.0013
177.5 0.0487 0.0478 0.0503 0.0008 −0.0017
202.7 0.0484 0.0474 0.0503 0.0010 −0.0019
227.5 0.0482 0.0472 0.0503 0.0010 −0.0022
251.9 0.0479 0.0468 0.0502 0.0011 −0.0024
276.5 0.0476 0.0464 0.0501 0.0012 −0.0026
300.7 0.0472 0.0459 0.0499 0.0013 −0.0026
324.5 0.0469 0.0454 0.0495 0.0015 −0.0026
348.1 0.0466 0.0451 0.0494 0.0015 −0.0028
371.3 0.0463 0.0447 0.0491 0.0017 −0.0028
394.1 0.0461 0.0445 0.0491 0.0016 −0.0031
416.5 0.0459 0.0440 0.0487 0.0018 −0.0028
438.3 0.0457 0.0439 0.0487 0.0018 −0.0030
459.5 0.0457 0.0437 0.0485 0.0020 −0.0029
480.1 0.0457 0.0435 0.0484 0.0022 −0.0027
499.9 0.0459 0.0436 0.0485 0.0023 −0.0027
518.9 0.0462 0.0436 0.0485 0.0026 −0.0023
536.9 0.0467 0.0440 0.0490 0.0027 −0.0023
554.1 0.0474 0.0450 0.0503 0.0024 −0.0028
570.3 0.0484 0.0464 0.0521 0.0020 −0.0037
585.3 0.0497 0.0476 0.0535 0.0020 −0.0039
598.9 0.0513 0.0494 0.0553 0.0020 −0.0040
611.5 0.0535 0.0503 0.0563 0.0032 −0.0028
622.7 0.0563 0.0531 0.0597 0.0033 −0.0034
632.5 0.0600 0.0562 0.0632 0.0038 −0.0032
640.9 0.0651 0.0608 0.0685 0.0043 −0.0034
647.7 0.0720 0.0668 0.0752 0.0052 −0.0032

Total absolute difference (m) 0.0617 0.0774

3.4. Test D: sinusoidal wave propagation over a bar

This test is believed to be a good example to analyse the performance of the short wave models
[7, 10, 12]. A bar on a 25 m long channel is situated between 6 and 17 m. In the remaining parts
of the channel, the bottom is flat. The bar is introduced by applying an upward slope of 1:20
between 6 and 12 m and steeper downward slope of 1:10 between 14 and 17 m. The top of the
bar between 12 and 14 m is horizontal. The depths in horizontal part before and after the bar
and in the horizontal part on the top of the bar are 0.4 and 0.1 m, respectively. At the seaward
boundary sinusoidal wave with an amplitude of 0.01m and a period of 2.02s is generated and at the
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Table IV. Linear shoaling test results: the errors, computed with respect to the linear theory, in the peak
surface elevation values above the still water depths at the wave crests along the channel.

Distance (m) Error in MS (%) Error in BN (%)

23.5 1.8 1.5
49.7 1.9 0.8
75.7 2.1 0.1

101.3 2.0 −0.8
126.9 1.8 −1.9
152.3 1.8 −2.7
177.5 1.7 −3.5
202.7 2.0 −4.0
227.5 2.1 −4.6
251.9 2.3 −5.1
276.5 2.5 −5.5
300.7 2.8 −5.7
324.5 3.2 −5.8
348.1 3.3 −6.1
371.3 3.6 −6.3
394.1 3.4 −6.9
416.5 4.0 −6.4
438.3 3.9 −6.9
459.5 4.3 −6.6
480.1 4.7 −6.3
499.9 4.9 −6.1
518.9 5.6 −5.3
536.9 5.7 −5.2
554.1 5.0 −6.3
570.3 4.2 −8.0
585.3 4.1 −8.1
598.9 3.8 −8.1
611.5 6.0 −5.6
622.7 5.8 −6.3
632.5 6.3 −5.7
640.9 6.6 −5.7
647.7 7.3 −4.8

Averaged error (%) 3.8 5.1

shoreward boundary, a sponge layer is applied as in the previous tests. The numerical simulation
is performed using the same time step of �t = 0.007 s and cell size of 0.025 m× 1 m as given by
Erduran et al. [12] for comparisons.

The time histories of the free surface profiles at points 10.5, 13.5, 15.7 and 17.3m are given in
Figures 10–13, respectively. The obtained free surface profiles from the solutions of the BN and
the MS show a similar trend. However, it appears to be that the results of the BN are slightly better
comparing to the experimental ones, particularly at the turning points on the profiles. Overall,
both the BN and the MS results are in very good agreement with those obtained from using other
numerical techniques [7, 10].
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Figure 10. Time histories of free surface profiles obtained from the solutions of the BN and the MS and
the experiment at 10.5 m—sinusoidal wave propagation over a bar.
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Figure 11. Time histories of free surface profiles obtained from the solutions of the BN and the MS and
the experiment at 13.5 m—sinusoidal wave propagation over a bar.
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Figure 12. Time histories of free surface profiles obtained from the solutions of the BN and the MS and
the experiment at 15.7 m—sinusoidal wave propagation over a bar.
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Figure 13. Time histories of free surface profiles obtained from the solutions of the BN and the MS and
the experiment at 17.3 m—sinusoidal wave propagation over a bar.
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4. DISCUSSION

Tests A and B indicate that there are almost no differences between the results obtained from the
solutions of the BN and the MS, suggesting that their performances for the simulation of deep
water wave propagations on a horizontal bottom are identical. The results also suggest that even
if the MS type equations produce truncation errors in both in the continuity and the momentum
equations as stated by Beji and Nadaoka [29], these errors should be very small or they are almost
in the same order of the errors generated by the BN, which is said to have truncation errors only in
the continuity equation. Therefore, the results support the statement of Schäffer and Madsen [30]
that overall accuracy rather than the accuracy of the continuity or the momentum equations should
be checked before reaching a conclusion.

The results of the linear shoaling test also agree with the statement of Schäffer and Madsen
[28] that a slight variation in the energy conservation can be an advantage. Even though the
BN energy conservation is assumed to be better than the MS, it has been demonstrated that
the linear shoaling characteristic of the MS is slightly better. It should be worth remembering that
the results obtained in this study is based on the hybrid solution of Equation (36) which is slightly
different than Equation (35) originally used by Madsen and Sørensen [4]. Therefore, the computed
differences between the MS and the BN obtained from the linear shoaling test may not be the
same if Equation (35) instead of Equation (36) could have been solved by the hybrid scheme.

When the results of sinusoidal wave propagation over a bar obtained from the BN and the MS
are analysed, it is seen that there are again not obvious differences between them. In fact, the
differences do not cause any significant discrepancies on the obtained free surface profiles and
comparing to the experimental free surface profile, both the BN and the MS show similar trends.
At some points, the BN results are closer to the experimental ones while at some other points the
MS results are closer. However, in general, it appears to be the BN results slightly better. This
may be due to fact that the truncation errors generated by the BN are less than that of the MS and
this property of the BN may not have manifested itself in the sinusoidal wave propagation in deep
waters over a horizontal bottom. However, the bar test is believed to be one of the ultimate tests
to determine the performances of the short wave models and even from this test it is difficult to
conclude that the BN type of the Boussinesq equations is better regarding to the accuracy.

Although it appears to be the results of Tests A, B do not agree with the results of the bar test,
considering the size of the differences, one can conclude that both the BN and the MS are equal.
Not any significant differences are found to recommend choosing one to another. Both equations
can be used for the similar test cases.

Although the aim of this study is not to discuss advantages or disadvantages of the hybrid
solution over the readily available entirely finite-element or finite-difference solutions, it may be
worth noting that the hybrid solution has a disadvantage over the other methods that the grid size
used in all applications has to be chosen smaller. Thus, the time step is also selected to be smaller
due to the explicit solution of the continuity equation. This is mainly due to the use of the limiter
function used to provide fourth-order accuracy in space [12]. Different slope limiters including
Minmod, Superbee, van-Leer, van-Albada, and K limiters were tested but the problem was not yet
solved even though slight improvement was obtained with the use of K limiter. Therefore, there
is still a need for more research to find the most suitable limiter function. The advantages of the
hybrid solution are already given in the introduction section so it is skipped here.

Overall, the results show that both the BN and the MS type Boussinesq equations provide a
reasonably good description of wave propagation in coastal regions.
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5. CONCLUSION

The following conclusions can be drawn from this study:

(1) Previously introduced hybrid solution is applied to another form of the Boussinesq equations
(BN). The results are compared with the experimental and theoretical results and it has been
shown that the hybrid solution of the BN can be used for the short wave simulations.

(2) BN and MS type Boussinesq equations are compared and apart from the linear shoaling
test results the comparisons show that they produce almost identical results, indicating that
the order of the truncation errors (if any) generated by the use of the BN or the MS type
Boussinesq equations should be almost the same. If there is any correlation between the
truncation errors and the exact energy conservation, then it may be concluded that their
energy conservation properties should also be similar or they are not distinguishable within
the accuracy that these equations valid as stated by Schäffer and Madsen [30].

(3) The linear shoaling characteristics of the MS is found to be slightly better but looking at
the averaged errors (3.8% for the MS and 5.1% for the BN), one can argue that the hybrid
solution of the BN could also be used in similar flow conditions.

(4) Overall, the author believes that both the BN and the MS can be used for the simulation of
the short wave propagations and it is difficult to suggest one over another.
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